Industrial IoT Security Attacks & Countermeasures

Conference 2016

Chris Shire – Infineon Technologies 06.12.16

Agenda

Jeep Cherokee

Source: Remote Exploitation of an Unaltered Passenger Vehicle, Miller & Valasek, 2015. http://illmatics.com/Remote%20Car%20Hacking.pdf

Ukrainian Power Grid

Source: Analysis of the Cyber Attack on the Ukrainian Power Grid, SANS & E-ISAC, 2016. https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.p

5

Source: To Kill a Centrifuge, Langner, 2013. <u>http://www.langner.com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf</u>

Recent U.S. Government communications

- Congressional Testimony of James Clapper, Dir Nat Intel, 2015-09-10
 - "Unknown Russian actors successfully compromised the product supply chains of at least three Indl Control System vendors so that customers downloaded malicious software ("malware") designed to facilitate exploitation directly from the vendors' websites along with legitimate software updates, according to private sector cyber security experts."
- > Federal Energy Regulatory Commission : Final Rule 829
 - NERC must develop a Reliability Standard that addresses Software Integrity and Authentication
- > National Telecommunications and Information Administration
 - NTIA convening multi-stakeholder process on Internet of Things Security Upgradability and Patching

Agenda

Firmware Upgrade Process

Types of Firmware Attacks

- > Attacks on Create Step
 - Steal code signing key
 - Get access to code signing process, sign bad firmware
 - Introduce vulnerabilities or malware into firmware before signing
- Attacks on Distribute Step
 - Substitute bad or old firmware during distribution
 - Block distribution of updates
- > Attacks on Update Step
 - Exploit vulnerability in firmware update process
- Attacks on Operate Step
 - Find vulnerability and develop exploit
 - Escalate privilege, rewrite firmware

Attacks and Countermeasures

infineon

Agenda

Countermeasures for Operate Step attacks

- > Find vulnerability and develop exploit
 - Employ secure development process to reduce vulnerabilities
 - Restrict access to firmware source and object code to prevent finding vulnerabilities
 - Use <u>measured boot</u> to detect firmware with known vulnerabilities & trigger update
- > Escalate privilege, rewrite firmware
 - Restrict upgrades to RTU (Root of Trust for Upgrade)
 - Use <u>secure boot</u> to prevent execution of unauthorized firmware
- > Inject malicious or obsolete firmware via tampering
 - Use **<u>secure boot</u>** to prevent execution of unauthorized firmware
 - Use **measured boot** to detect obsolete firmware & trigger update

Trusted Platform Module (TPM)

> The Trusted Platform Module (TPM):

- is a secure microprocessor that is designed to add hardware security to any system
- is based on a standard written by the Trusted Computing
 Group (TCG), an international industry standardization group
- is currently available based on two different standardized specifications TPM 1.2 and TPM 2.0 (the most recent one)
- Specified pin outs with I²C, LPC or SPI interfaces
 - available in VQFN-32 or TSSOP-28 package and Ext Temp Ranges

How can TPM protect your computer?

Making computers so secure even your BIGGEST SECRETS are SAFE

Infineon OPTIGA[™] TPM SLB 96xx TPM v1.2 and 2.0 Certified Platform Protection

Trusted Platform Module: Secure your Software and Data

- > Strong Authentication of Platform and Users
 - Unique embedded Endorsement Certificate
- > Secure Storage and Management of Keys and Data
- > Platform protection for embedded systems
 - Measured/Trusted Boot
 - TRNG, Tick-Counter, Dictionary Attack Lock-out
- > Built-in algorithms including RSA, ECC, SHA-256
- > Industrial Temp range working

Certified & Standardized Security

- > Official TPM product listed at Trusted Computing Group (TCG)
- > Security evaluated and certified to Common Criteria EAL4+

Infineon OPTIGA[™] TPM products

Product	ТРМ	Domain
SLB9645	TPM 1.2	I2C: ARM/non-x86 architectures
SLB9670	TPM 1.2 / TPM2.0	SPI: Intel/ARM architectures
SLB9660	TPM 1.2	LPC: Intel/x86
SLB9665	TPM 2.0	architectures

Applications:

- > Embedded Devices
 - Industrial, Medical, Networking, Transport, Gaming etc.
 - PC and Mobile Computing
- Intel x86, ARM platforms and others

More Info:

www.infineon.com/tpm www.trustedcomputinggroup.org

Measured Boot

Remote Attestation

Agenda

Anatomy of an Industrial IoT Platform

StrongSWAN Client					
TrouSerS					
Wind River Linux Kernel with TPM Driver					
UBOOT					
FSBL					
BootROM					

Avnet's Industrial IoT Starter Platform ICTOZED Arduino Shield Expansion Sensors / Actuators Additional / HMI / I/O Communication Expansion TPM board Pmod™ Pmod™ Expansion Expansion MicroZed System-on-Arduino Module Carrier Card Pmod™ Expansion Sensors / Actuators / HMI / Communication 2 Copyright © Infineon Technologies AG 2016. All rights reserved.

2016-12-06

Why Zynq?

Xilinx's Zynq-7000 SoC offers an industrial IoT platform

Processing System High-performance ARM MPU architecture Standard peripherals Gigabit Ethernet I2C, SPI, USB, CAN, UART, SDIO Security RSA, AES, and SHA, ARM® TrustZone®

Programmable Logic

Flexible custom sensor interfaces High-performance custom accelerators Scalable logic density

Easy Transition from Prototype to Production

23

Existing Zynq-7000 SoC HW Root of Trust Boot

- > Step 1: Provision Device Before
 - Load your RSA-2048 public key HASH into device
 - Load your public key into Flash
 - Load your signed FSBL into Flash
 - Turn On Root of Trust Boot
- Step 2: Field System
- Step 3: Apply Power, ROM Boots
 - Device loads public key from Flash into OCM
 - Device calculates HASH of public key
 - Device compares calculated HASH vs stored HASH
 - If Successful load, authenticate/decrypt and execute FSBL
 - If failure go into Secure Lockdown and notify system

New Measured Boot Capability with TPM

- Step 4: First Stage Boot Loader Measures and Extends Boot ROM and FSBL
 - Hash code
 - Send hash to TPM with Extend command
- Step 5: FSBL Hashes, Extends, and Runs Universal BOOT loader
 - Hash code
 - Send hash to TPM with Extend command
 - Run code
 - Decryption and authentication is optional here – up to the customer
- > Step 6: Boot Sequence Continues
 - Each Stage Hashes, Extends, and Runs the Next
 - Decryption and authentication is optional here – up to the customer

Adding Remote Identity Provisioning

Agenda

Enhancing Smart Building Security

- Industrial buildings rely on networks for control and physical security
- Attackers may attempt to attach fake subsystems e.g. cameras to facilitate theft.
- Networks need to ensure node integrity.

Enhanced secure building security

Raspberry Pi based Camera

Cisco Router CGR 1120

Demo built by Cisco, Infineon and Intel,

With the Assistance of HSR University of Applied Sciences, Rapperswil

Cisco UCS 240 Server

Authentication Flow Between Camera & Router

Raspberry Pi Camera

31

Authentication of Server & Router

Cisco CGR 1120

Authentication Architecture for Trusted Network Connect

Secure Network Topology

Protecting Your Industrial IOT Systems

- > Add a TPM to your design
 - Measured Boot
 - Remote Attestation
 - Strong Authentication
 - True RNG
 - Sealing
 - Tamper Resistance
- Use Measured Boot and Remote Attestation to manage firmware versions
 - See NIST SP 800-155 for details
- For more information visit <u>www.infineon.com/tpm</u>

Our IoT Security Portfolio The Right Security for your IoT design

	Embedded security	S	Secured connectivity		User identification
>	OPTIGA [™] product family - security products for Embedded Systems	>	 Security controllers with increased lifetime, mechanical robustness and extended temperature range 	> >	Enabling User-friendly two-factor authentication according to new FIDO 1.0 specifications Boosted NFC SE secured NFC experience for SIM, MicroSD [™] or wearables
>	Tailored, scalable, and				
	security for IoT, ranging from basic authentication products to advanced implementations		Ideal for embedded SIM cards in industrial M2M and Automotive applications		
>	OPTIGA™ TPM	>	M2M Industrial: SLM 76 and SLM 97 SOLID FLASH™ Families	> >	Embedded Secure Element Boosted NFC FIDO USB Tokens
>	OPTIGA [™] Trust Family				
	 For Programmable & Turnkey designs 	>	M2M Automotive: SLI 76 and SLI 97 SOLID FLASH™ Families	> >	
-	100000 And Internet		G Inte		G) lan.
STRATE	www.inf	iņ	ieon.com/ic	ot	-security
	www.inf	iņ	eon.com/ic	<u>ot</u>	-security

Part of your life. Part of tomorrow.

