# **Capri**<sup>^</sup>

# Overcoming the safety and security barriers to autonomous vehicle deployment

Colin Robbins. Principal Security Consultant, Nexor Prof Carsten Marple. Professor of Cyber Systems Engineering, WMG

IoT SF Conference, London.

#### Contributors:

- Mike Bartley, T&VS
- Rajesh, T&VS
- Mark Brackstone, Aimsun.
- Pete Sykes, Aimsun.
- Tuan Le, WMG
- Ivan Ivanov, WMG
- Bristol Robotics Laboratory
- Loughborough University

## **Capri Consortium**

#### £4.2 million of funding from:

- Innovate UK
- Centre for Connected & Autonomous Vehicles
- Industry

Pilot scheme that could pave the way for the use of connected and autonomous vehicles to move people around airports, hospitals, business parks, shopping and tourist centres.



#### **Capri Vision**

To **build** passenger, regulatory and market **trust** in autonomous pods as a practical, **Safe** and affordable way to travel.

Reducing the barriers to market for a commercial autonomous pod service by:

- Devising a procedure to certify the Operational Safety of autonomous pods
- Assessing the infrastructure requirements for deployment
- Addressing the legal and regulatory barriers to commercial use
- Co-designing a service blueprint with real user input
- Preparing a business case to support investment decisions

This presentation focuses on Cyber Security and how it could impact operational safety.



#### **Capri Architecture**

The Capri POD is connected to an Internet-based Fleet Management Systems.



#### N E X O R<sup>°</sup>



#### **Cyber Security: CAV Reference Architecture**

Peripherals

- A general CAV reference architecture that can understand CAV components, their functionalities and technologies in operation
- Identify the attack surfaces (potential threats) for components, functionalities, and technologies
- Shaping the focus of testing and validations through identifying most relevant threat agents and their goals





#### **CAPRI Internal POD Architecture**

- Remove irrelevant components and functions (POD has no Infotainment; having a steward instead of the driver for safety control only)
- Elaborating components and functions (adding Lidars, Radars and Ultrasonic sensors)
- Main threat agents: organised crime, hacktivists, transport infrastructure attackers, mischief makers





#### **Cyber Security: Threat Modeling – Cloud**

- Threat Model: Derived from NCC Group Automotive threat model



Cap

### **Cloud Security Scenario**

Assume Fleet Management Systems is compromised...

- What happens when STOP signal is sent?
- What happens if STOP signal is sent at a time when it would leave the POD in a dangerous position?
  - E.g., middle of a busy intersection
- Can you send all PODs to the same point, then tell them to stop?
  - Denial or Service

N E X O R<sup>®</sup>

Capri approach: Simulation





#### **Testing & Validation: Developing Knowledge of Attack and Defence Potential**

For each attack, testing and validation should investigate the following essential knowledge:

- Attack potential: minimum requirements for the attack to be successful: Elapsed time, expertise, knowledge, opportunity, equipment
- Defence potential: available controls and their effectiveness
- High probability threat agents and their relevant goals to initiate that attack

Three levels of testing:

- Theoretical analysis
- Simulation
- Trial
- → Balance between testing resource and requirements

Trial testing issues:

- Public trial vs private trial: Closer to reality but may have safety impact
- Proprietary testing issue: Cooperation via fuzzing test

| Attack surface                        | Threat modelling: STRIDE |                                                      |    |                |                        |     |
|---------------------------------------|--------------------------|------------------------------------------------------|----|----------------|------------------------|-----|
|                                       | Spoofing                 | ing Tampering Repudiation Information disclosure DoS |    |                | Elevation of Privilege |     |
| Camera                                | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| GPS                                   | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| Radar                                 | M3                       | M1                                                   | M1 | M1             | M3                     | N/A |
| Lidar                                 | M3                       | M1                                                   | M1 | M1             | M3                     | N/A |
| Blindspot sensors                     | M3                       | M1                                                   | M1 | M1             | M3                     | N/A |
| Ultrasound sensors                    | M3                       | M1                                                   | M1 | M1             | M3                     | N/A |
| Decision making system                | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| Curtis controller                     | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| MABX                                  | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| Digital Concentrator Measurement Unit | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| Cradle point                          | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
| Tire sensors                          | M3                       | M2                                                   | M2 | M3             | M3                     | N/A |
|                                       |                          |                                                      |    |                |                        |     |
|                                       |                          | M1: Analyis                                          |    | Completed      |                        |     |
|                                       |                          | M2: Simulation                                       |    | In Progress    |                        |     |
|                                       |                          | M3: Trial                                            |    | Planning       |                        |     |
|                                       |                          |                                                      |    | Not Applicable |                        |     |

Example of a typical testing plan and management





## Manage the Knowledge on Attack

Issue of large and expanding attack surfaces

- Analysing all the attacks is infeasible
- Attack tree to shape the focus of security analysis
- Attacks come from several threat agents, aiming at specific functions and surfaces
- → Identifying the most likely threat agents and goals to reduce the set of attacks to analyse

THE UNIVERSITY OF WARWICK



#### **Dynamic Risk Consideration: Environment and System State**

Environment risks can either reinforce or reduce vehicle risks, because they have:

- Impacts on attack and defence potential
- Impacts on threat agents and their motivations.

System's security state affects risk assessment

• Vulnerabilities in one surface may open the chances for attacking other (linked) surfaces.

Effective dynamic risk assessment at scale:

 Maintain risk profiles of environments and system states to reuse the analysis





## Simulator Testbench: Safety and Cyber Security

Objectives

- Codify corner cases from accidentology & security, measure coverage
- Automate checking for correctness
- Control simulation and communications with POD

Concerns

- Fidelity
- Hitting corner cases
- Pass/fail automation

Solution

- Correlation with real world trials
- Constrained random test generation
- Intelligent, model-based test generation (e.g. agent-based or formal methodsbased) for corner cases
- Assertions and functional coverage







## **Summary**

Final trials:

– Queen Elizabeth Olympic Park

– Jan 2020

Blend of approaches to assure Cyber Safety

- Traditional threat assessment
- Simulation
- Trial

Results will feed longer term pilots



lad

# Thank you

**Capri**<sup>^</sup>

For more information: http://caprimobility.com/



Colin Robbins. Principal Security Consultant Colin.Robbins@Nexor.com



Prof Carsten Marple. Professor of Cyber Systems Engineering CM@warwick.ac.uk