
Supporting Secure Code for IoT Devices
in Mainstream Compiler Tool Chains

IoTSF Conference
4 December 2018

Jeremy Bennett
Graham Markall

Simon Cook
Paolo Savini

Craig Blackmore
Sam Leonard

Copyright © 2018 Embecosm.
Freely available under a Creative Commons license.

Developing Secure IoT Software

Good software
engineering
practices

Coding
guidelines

Engineering teams
must follow process

Neet to facilitate teams
in following process

Why the Compiler?

C/C++

Java

Assembler

Scripts

Raw machine
code

The compiler gets to look
at (almost) all the code

The compiler gets to look
at (almost) all the code

How the Compiler Can Help
Warning of bad practice

Advising the programmer when
code appears to follow bad
practice

Providing heavy lifting

Automating complex tasks to
make them easier for the
programmer

Academic / Industrial Context
● LADA: Leakage Aware Design

Automation
– Prof Elisabeth Oswald
– Dr Dan Page

● Customers’ Secure Processors
– Using LLVM to Guarantee

Program Integrity

https://www.youtube.com/watch?v=isHCLMrXPUk
https://www.youtube.com/watch?v=isHCLMrXPUk

Techniques
● Stack / Register Erase: Protecting secrets
● Bit-slicing: Side-channel resistance
● Control Flow Balancing: Side-channel resistance
● Sensitive Control Flow: Side-channel warnings
● Bit-splitting: Hardware snooping attack resistance
● Defensive stores: Glitch attack resistance

Example: CERT MEM03-C.

Today’s Techniques
● explicit_bzero (BSD, Glibc)

● memset_s (C11 standard)

● SecureZeroMemory (MS Windows)

● Finalizers, Limited Private types
(Ada)

Today’s Problems
● Ephemeral storage

– (e.g. stack) only Ada addresses
this

● Explicit application
– must hand apply to all relevant

variables

“Clear sensitive information stored in reusable resources”“Clear sensitive information stored in reusable resources”

Problem: Critical Data on the Stack
int mangle (uint32_t k)
{
 uint32_t res = 0;
 int i;

 for (i = 0; i < 8; i++)
 {
 uint32_t b = k >> (i * 4) & 0xf;
 res |= b << ((7 - i) * 4);
 }
 return res;
}

int main (int argc,
 char *argv[])
{
 uint32_t km;
 km = mangle (atoi (argv[1]));
 return (&km)[2];
}

main

0xdeadbeef

0xfeebdaed

4

0x0000000f

return addr
argc

argv

2

0xfeebdaed

return addr

km

(&km)[2]

“3735928559”

No mechanism
for programmer
to access and
clear the stack

No mechanism
for programmer
to access and
clear the stack

Solution: erase_stack Attribute
int mangle (uint32_t k)
 __attribute__ ((erase_stack))
{
 uint32_t res = 0;
 int i;

 for (i = 0; i < 8; i++)
 {
 uint32_t b = k >> (i * 4) & 0xf;
 res |= b << ((7 - i) * 4);
 }
 return res;
}

int main (int argc,
 char *argv[])
{
 uint32_t km;
 km = mangle (atoi (argv[1]));
 return (&km)[2];
}

main

0

0

0

0

return addr
argc

argv

2

0xfeebdaed

0

km

(&km)[2]

“3735928559”

Demo: Exploit Defeated By erase_stack

https://www.youtube.com/watch?v=B-ZGXn4urj4

https://www.youtube.com/watch?v=B-ZGXn4urj4

Takeaways
● Developing secure IoT software requires good practice
● Good practice is supported by good tooling
● Example in this case: compiler-assisted security

techniques

Takeaways

Developing
secure IoT
software

requires good
practice

Good practice
is supported

by good
tooling

The compiler
tool chain is a

great place
for security

tooling

Thank You

www.embecosm.com

Copyright © 2018 Embecosm.
Freely available under a Creative Commons license.

Jeremy Bennett
Graham Markall

Simon Cook
Paolo Savini

Craig Blackmore
Sam Leonard

https://www.embecosm.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

