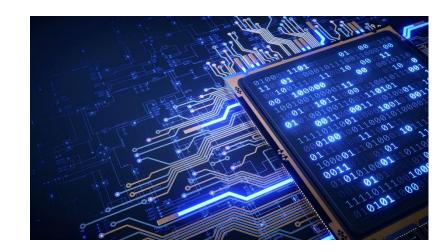
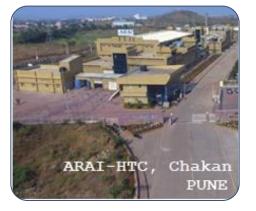
Driving Compliance – Global Automotive Cybersecurity Standards and Indian Regulations


ISO 21434, UNECE WP.29, ARAI 189/190

M M Desai-Deputy Director ARAI, Pune


- Introduction to ARAI
- Regulatory Mechanism in India
- Government of India's Mission-CASE
- Auto Electronics, Connectivity & ITS in India
- CSMS & SUMS AIS standards
- India Specific Discussion
- Challenges

ARAI at a Glance

- •Established in **1966** in Pune as a Society
- •Affiliated to Ministry of Heavy Industries (MHI), Gol
- •Recognized by DSIR as a Scientific Industrial Research Organization (SIRO)
- •16 specialized Auto Engg. Labs/ Depts
- •**4** CoEs
- •1800 + B2B Customers every year
- •675+ strong team

•Accredited for ISO 9001, 14001, 45001, 27001, 17025

Regulatory Mechanism in India

Government of India

MORTH

Ministry of Road Transport & Highways

MOHI

Ministry of Heavy Industries

MOEF

Ministry of Environment & Forests

Ministry of Consumer Affairs

> **DGFT** Director General of Foreign Trade

State Ministries

Standardization

CMVR -Technical Standing Committee

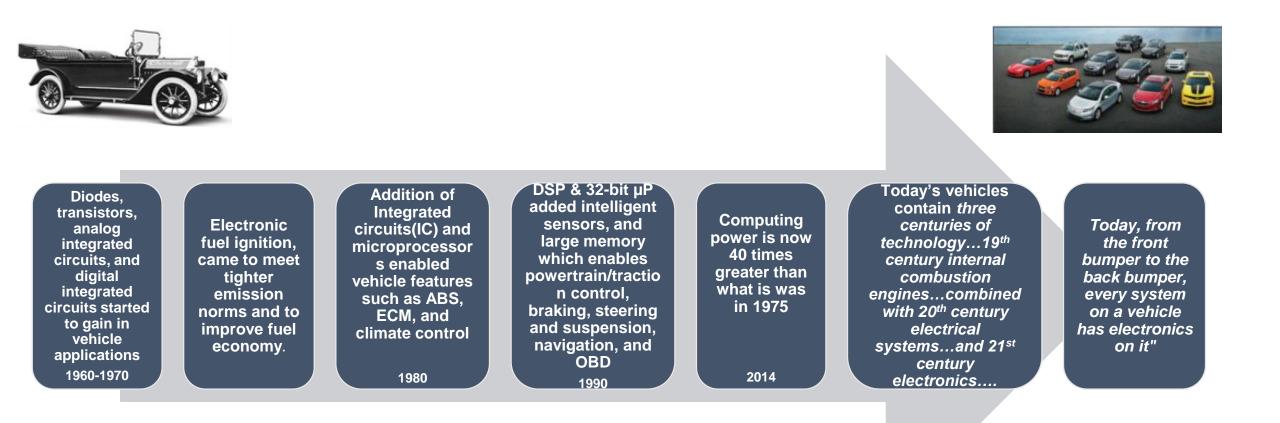
_

Automotive Industry Standards Committee-AISC

Standing Committee on Emission Legislation – SCOE

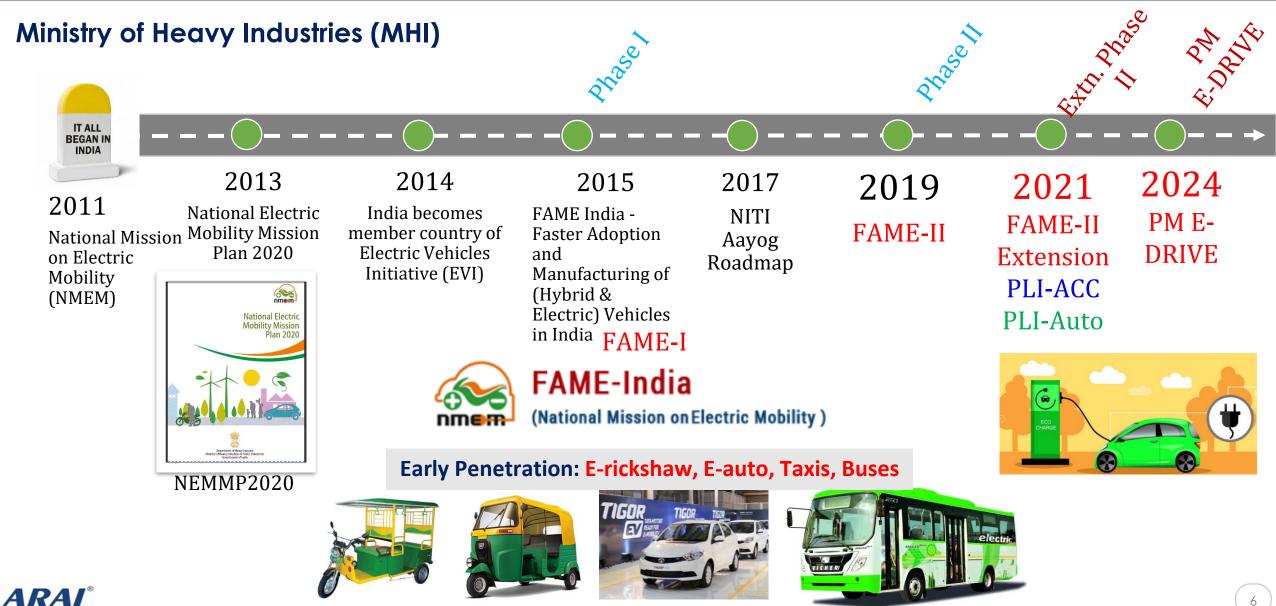
Bureau of Indian Standards – BIS

Type Approval / Certification Agencies


ARAI

Automotive Research Association of India Other testing agencies identified by Govt. of India

Automotive Electronics "Past and Present"


...Automobile is one of the fastest growing sectors in the world

E-mobility-Government Initiatives

Intelligent Transport System (ITS) Efforts in India (1)

ITS enable Urban Bus Specifications finalized by MoUD

2013 MoUD covered ITS system for buses in UBS-II Specifications for JnnURM Scheme

Key Features – ITS

- Multiplex wiring
- Communication with Command Center : Wifi and GPRS
- Vehicle Health Monitoring and Diagnostics System (VHMD)
- Single Driver Console

- <u>PIS inside and outside integrated with audio announcement system of approaching bus</u> stop
- Security Camera Network

ITS Efforts in India (2)

ITS Efforts in India (3)

Tracking Device in School Buses of CBSE

In 2014, to ensure safe transportation of children, <u>Central Board of Secondary</u> <u>Education</u> (CBSE) has made it compulsory to install GPS in all school buses. The Global Positioning System which will help track school buses will be approved by <u>ARAI</u> according to the new guidelines issued by CBSE.

Again, issued guidelines in 2017

Transportation of hazardous goods requires Vehicle Tracking

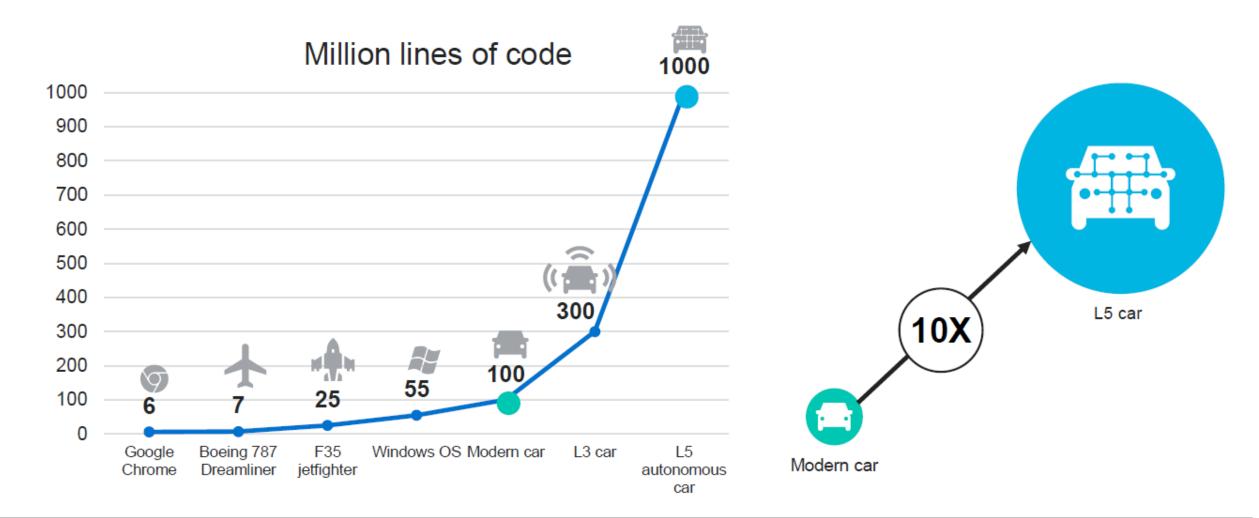
Now Oxygen Cylinder Carrying vehicles must be fitted with Tracking Device (VTS)

Digital Tachographs are planned for vehicles carrying Dangerous Goods

ITS Efforts in India (4)

AIS140/ IS 16833: Intelligent Transport System (ITS) -Requirements for Public Transport Vehicle Operation

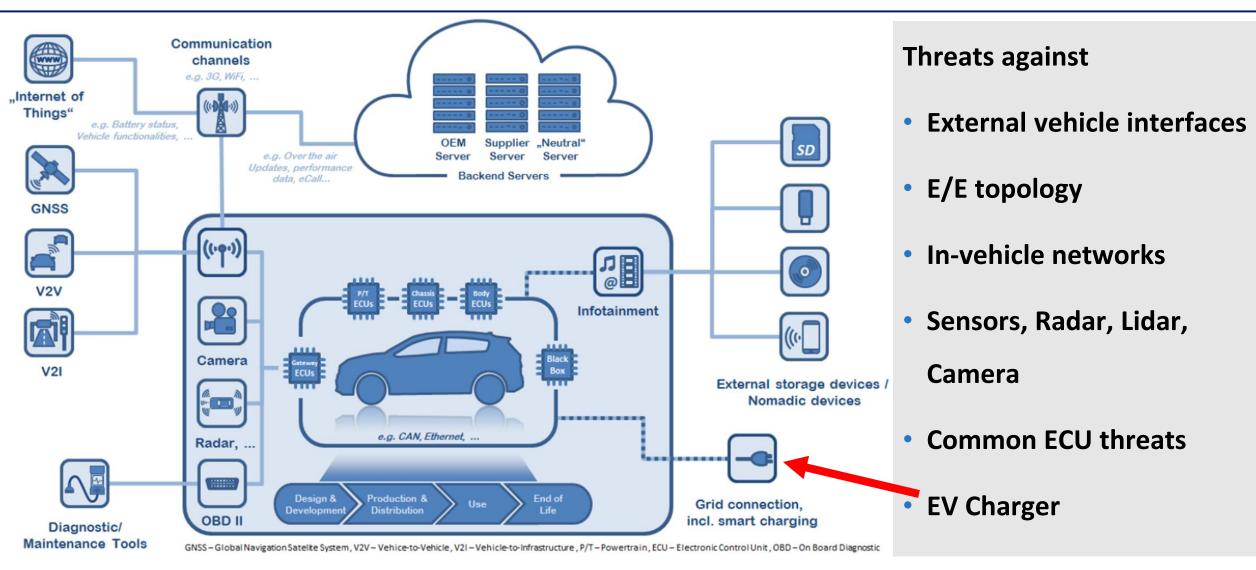
IRNSS Support is Mandatory


ITS Efforts in India (5)

Proposal for Electronic Toll Collection

- On Highway by <u>RFID</u>
 <u>implemented</u>
- Plan to have GPS based Toll Collection

Transition to software-defined vehicles


More software + connectivity \rightarrow greater security threat surface

Source: VW

rogress unough research

© 2021 Marvell confidential. All rights reserved.

Vehicle Threat Landscape: Possible attack vectors

Penetration Testing, Fuzz Testing, Vulnerability Scanning

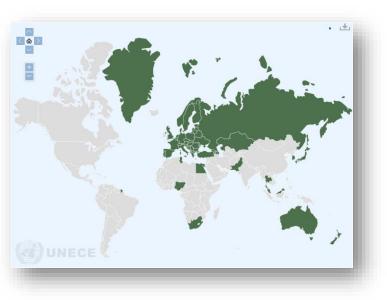
11

WP29: 1958 and 1998 Agreement

- India has signed 1998 agreement.
- Hence, we participates in GTR and WP 29 meetings

• In India, BIS is APEX standardization body

• Automotive Industry Standards Committee (AISC) formulates AIS standards.

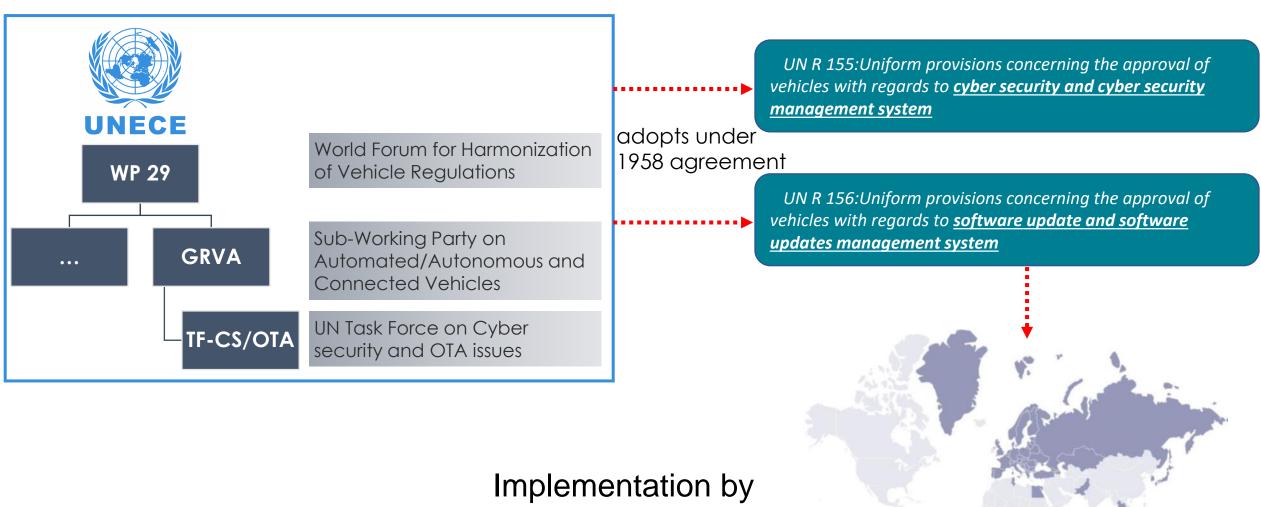


WP29: 1958 and 1998 Agreement

1958 Agreement:

- "UN Regulations"
- Directly applicable by the stakeholders/industry
- Mutual recognition of Type Approvals

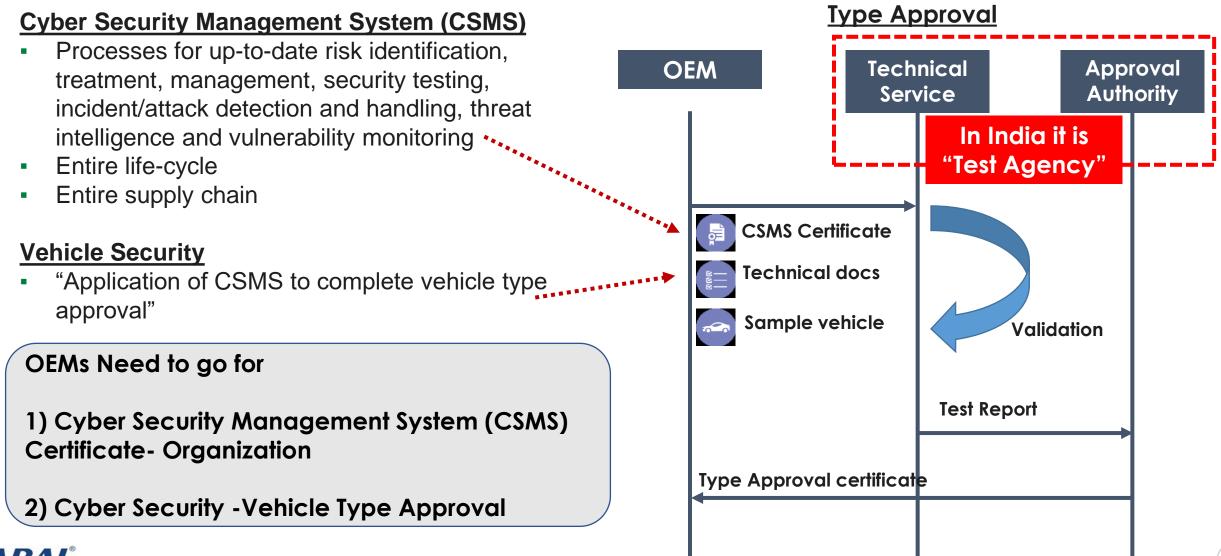
1998 Agreement:


- "UN Global Technical Regulations"
- Requires transposition in national law
- No administrative procedures -> suitable for:
 - Self Certification
 - Type Approval

13

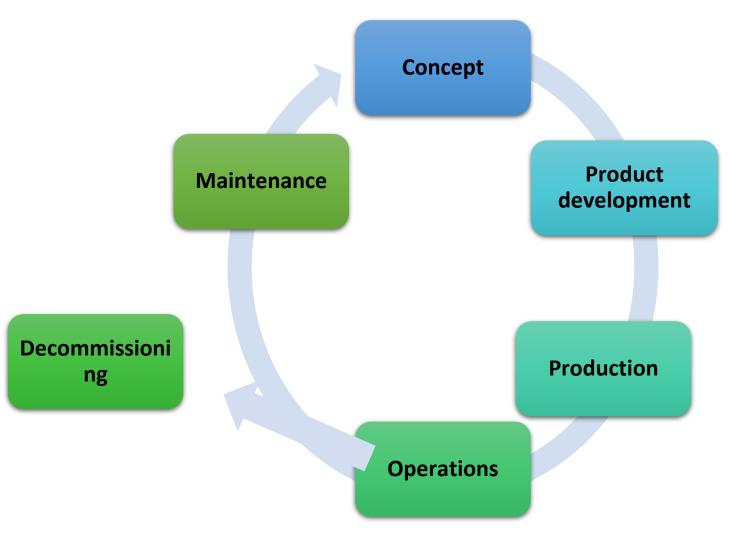
WP29 : GRVA

contracting parties' of 1958 agreement



Cyber Security & CSMS: AIS 189

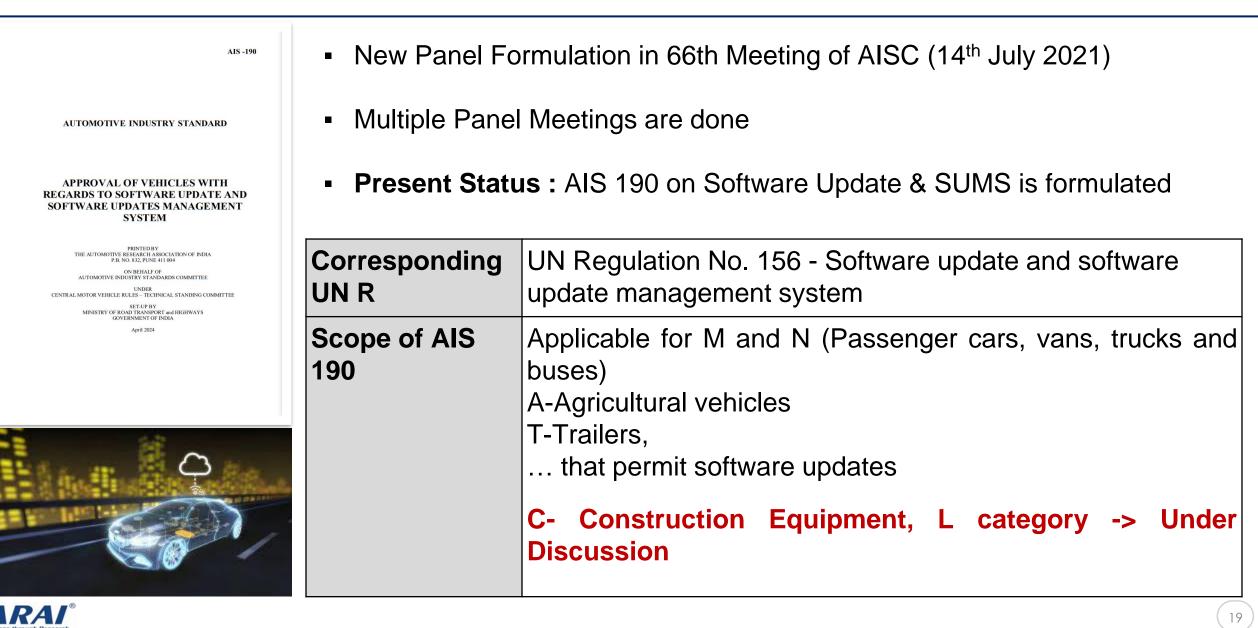
AIS -189	 New Panel Formulation in 66th Meeting of AISC (14thJuly 2021) 							
AUTOMOTIVE INDUSTRY STANDARD APPROVAL OF VEHICLES WITH REGARDS TO CYBER SECURITY AND CYBER SECURITY MANAGEMENT	 Multiple Panel Meetings are done Present Status : AIS 189 on CSMS is formulated 							
PRINTED BY THE AUTOMOTIVE RESEARCH ASSOCIATION OF INDIA P.B. NO. 832, PUNE 411004 ON BEHALF OF AUTOMOTIVE INDUSTRY STANDARDS COMMITTEE UNDER CENTRAL MOTOR VEHICLE RULES - TECHNICAL STANDING COMMITTEE	Present St	tatus : AIS 189 on CSMS is formulated						
SET UP BY MINISTRY OF ROAD TRANSPORT and HIGHWAYS GOVERNMENT OF INDIA April 2024	Corresponding UN R	UN Regulation No. 155 - Cyber security and cyber security management system						
		Applicable for M and N (passenger cars, vans, trucks and buses) T-trailers if fitted with at least one electronic control unit L7- light four-wheeler vehicles if equipped with automated driving functionalities from level 3 onwards Discussion for L1/L2/L5 category						



Introduction to CSMS & Vehicle Type Approval

Cybersecurity throughout the Life Cycle of Vehicle

Overall Cybersecurity risk management



ISO/SAE 21434 Road Vehicles - Cybersecurity Engineering

- 1. ISO 21434 addresses the cybersecurity perspective in engineering of **electrical and electronic** (E/E) systems within **road vehicles**.
- 2. A framework is defined that includes requirements for cybersecurity processes and a common language for communicating and managing cybersecurity risk.
 - Define cybersecurity policies and processes;
 - Manage cybersecurity risk; and
 - Foster a cybersecurity culture.
- 3. ISO 21434 can be used to implement a **cybersecurity management system(CSMS)** including cybersecurity risk management.

Software Update including Over-The-Air(OTA) Update: AIS 190

Software Identification Number RxSWIN or AIS[IS]xSWIN

A dedicated identifier,

defined by the vehicle manufacturer, representing information about the type approval relevant software of the Electronic Control System.

- Software Update Management System with vehicles for updating vehicle firmware by over-the-air updates (OTA) as per AIS 190 standard.
- Software Defined Vehicle (SDV) is reshaping the Automotive Landscape providing
 - Customization and Personalization
 - Improved User Experience
 - AI Integration
 - Operational Efficiency
 - Innovation
 - Enable Over-The-Air Updates

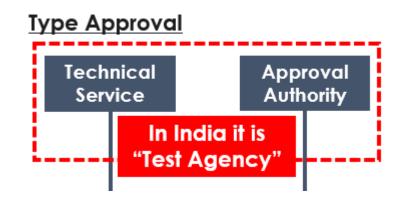
Discussion points w.r.t India

Proposal under discussion for Applicability to category of vehicles

- Many Electric Vehicles are being launched in India
- Premium 2W-EVs offer OTA update and OTA configurable subscription model
- Panel members are discussing to bring 2W (L1/L2) category under the ambit of CSMS & SUMS

Challenges in Implementation w.r.t India

Implementation of AIS 189 (CSMS) and AIS 190 (SUMS)


\rightarrow

- Competent personnel with Specific Automotive risk assessments knowledge
- Competency for Cyber Security in Automotive –OEMs,
 - -Tire-1's,
 - -Test Agency
- Penetration Testing
 - -Required resources

- In UN ECE as per 1958 agreement
 - Technical Service (TS)
 - Type Approval Authority (TAA)
 - are different

• In India, Test Agency (Like ARAI) plays both roles.

- Contacting Parties (CP) applying this UN R 155, shall notify and inform other approval authorities of the contracting parties applying UN R 155 about the <u>method and criteria</u> taken as basis to assess the appropriateness of the measures taken in accordance with this regulation.
- In EU, Approval Authorities to exchange information via the <u>Database for</u> <u>Exchange of Type Approval (DETA)</u> on the assessment method used for R 155.

In India, no such practices of Data Exchange.- Need to establish.

At present in AIS 189, this clause is deleted

Implementation Timelines

Europe Implementation of Cybersecurity and OTA

- 1. Year July 2022- New Models
- 2. Year 2024- Existing models

India Proposed Implementation of Cybersecurity and OTA

- 1. OTA capable: Oct 2027 (New Model)/ Oct 2028 (Existing Model)
- 2. All OTA Capable Vehicles: Oct 2029

3. All other Vehicles: Oct 2030

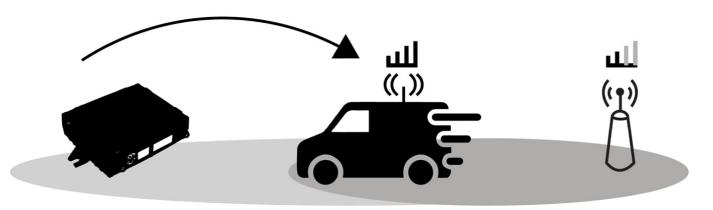
ARAI Preparation: Pen Testing Lab

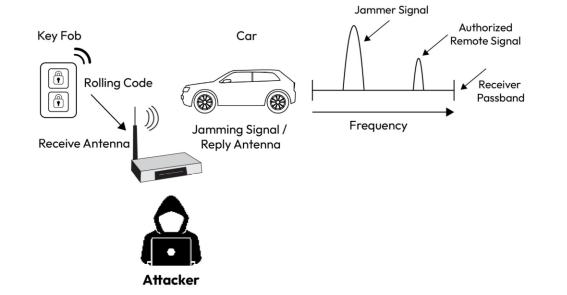
In-Vehicle Network

- USB, Wi-Fi, or Bluetooth
- CAN
- FlexRay
- LIN
- UART
- SENT (Single Edge Nibble Transmission)
- GMSL (Gigabit Multimedia Serial Link)
- I2C (Inter-Integrated Circuit)
- Ethernet
- SAE J1939
- SAE J2497 -Power line communication (PLC)

Hardware Tools

- Arduino Shields for CAN communication
 - CANdiy-Shield
 - ChuangZhou CAN-Bus Shield
 - DFRobot CAN-Bus Shield
 - SeeedStudio SLD01105P CAN-Bus Shield
 - SparkFun SFE CAN-Bus Shield
- CANtact
- Raspberry Pi

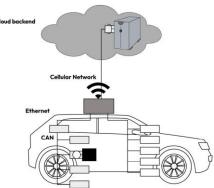

- PICAN CAN-Bus Board
- ChipKit Max32 Development Board and NetworkShield
- Freematics OBD-II Telematics Kit



ARAI Preparation : Connectivity threats

- Cellular
 - Location tracking
 - Communication interception
 - Service downgrade
- Wi-Fi
- Mobile -application-based attacks- API
- Bluetooth
- Universal Serial Bus (USB)
- OBD
- Radio frequency-RKE

Tool: Cell-site simulators (CSSs) 2G, 3G and LTE, 4G and 5G



ARAI Preparation : Software Tools/Fuzz Testing

Backend-Server related threats

- Insider threat
- Social engineering
- Spoofed vehicle ID
- Service disruption
- Vehicle data loss or exfiltration
- Malicious software updates
 Attack methods against OTA
- Eavesdropping attacks
- Denial of software updates
- Rollback and freeze attacks
- Resource exhaustion
- Mix and match

OTA Backend Command Center

Push Software

Software Update

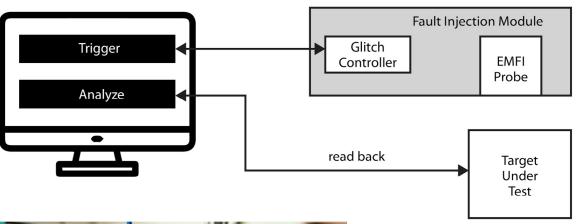
Pull Software

Undate

- Wireshark
- PyOBD Module
- CANiBUS Server
- Linux Tools
- Kayak
- SavvyCAN
- O2OO Data Logger
- UDSim ECU Simulator
- Octane CAN Bus Sniffer

<u>File</u> O	BD-II	Trouble co	des <u>H</u>	lelp					
Status	Tests	Sensors	DTC	Trace					
Suppor	ted				Sensor	Value			
			F	uel Rai	Pressure		-		
		In	take M	anifold	Pressure				
х				En	gine RPM	0 ()			
х		Vehicle Speed 0.0 (MPH)							
х		Timing Advance -23.5 (degrees							
х	Intake Air Temp -40 (C)								
х			0.0 (lb/min)						
х		100.0 (%)							
X Secondary Air Status 04 ()									
х			Locati	on of O	2 sensors	03 ()			
х				O2 Set	nsor: 1 - 1	51099.21875 (%)		
х				O2 Ser	nsor: 1 - 2	17699.21875 (%)		
				O2 Ser	nsor: 1 - 3		*		

File 1	RETools Send Fra	mas					Savvy CAN V143			- *		
	Timestamp	ID	Ext	Dir	Bus	Len	Data		Seria	d Port		
1	24.118004	0x020A	0	Rx	0	8	x00 0x00 0x00 0x00 0x80 0x2A 0x00 0x00					
2	24.118016	0x0E	0	Rx	0	8	0x20 0x51 0x3F 0xFF 0x08 0xFF 0xA0 0x7E	Connect To GVRET				
3	24.118029	0x029C	0	Rx	0	8	0x00 0x08 0x00 0x00 0x8E 0x01 0x00 0x14	11	CANBus Speeds:			
4	24.118041	0x02DC	0	Rx	0	8	0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00	1	First Bus: Second Bus:			
5	24.118054	0x0228	0	Rx	0	4	0x40 0xC0 0x90 0x59	11	Disabled +	Disabled		
6	24.118065	0x0102	0	Rx	0	6	0xAE 0x94 0xFB 0xFF 0xF5 0xFF	Set CANBUS Speeds				
7	24.128004	0x026A	0	Rx	0	3	0x06 0x02 0x00	1	Total Frames Captured			
8	24.128015	0x0E	0	Rx	0	8	0x20 0x51 0x3F 0xFF 0x08 0xFF 0xB0 0xB3	11	195289 Frames Per Second: 0			
9	24.128027	0x0228	0	Rx	0	4	0x40 0xC0 0xA0 0x13	1				
10	24.128038	0x0102	0	Rx	0	6	0xBB 0x94 0xFC 0xFF 0xF9 0xFF	1	Suspend Capturing			
11	24.138004	0x0358	0	Rx	0	8	0x44 0x03 0x50 0x01 0xD0 0x00 0x00 0x3C	Normalize Frame Timing				
12	24.138016	0x0E	0	Rx	0	8	0x20 0x51 0x3F 0xFF 0x08 0xFF 0xC0 0xEA	1	Clear Frames Auto Scroll Window Interpret Frames Querarite Mode			
13	24.138029	0x020C	0	Rx	0	8	0x00 0x00 0x00 0x00 0x00 0x00 0xF0 0x00	1				
14	24.138041	0x022C	0	Rx	0	8	0x01 0x00 0xD1 0x8D 0x00 0x00 0xD6 0xCE	11				
15	24.138055	0x023C	0	Rx	0	8	0x40 0x40 0x41 0x78 0x7E 0x64 0x00 0x00	11				
16	24.138067	0x024C	0	Rx	0	8	0xAB 0x7D 0x00 0x00 0x00 0x00 0x00 0x00	1	Frame Filtering:			
17	24.138079	0x040C	0	Rx	0	1	0x00	1	Cx0E			
18	24.138089	0x071C	0	Rx	0	8	0000 0000 0000 0000 0000 0000 0000 0000	11	C 0x0102			
19	24.138102	0x0228	0	Rx	0	4	0x40 0xC0 0xB0 0xDE	1	C 0x0106			
20	24.148004	0x0102	0	Rx	0	6	0xBB 0x94 0xFB 0xFF 0xF8 0xFF	C 0x0116				
21	24.148016	0x0E	0	Rx	0	8	0x20 0x51 0x3F 0xFF 0x08 0xFF 0xD0 0x27	11	0x0125 0x0125			
22	24.148028	0x05E8	0	0 Rx 0 6 0x00 0x00 0x00 0x00 0x00 0x00 0		1	C 0x0136					
23	24.148040	0x0228	0	Rx	0	4	0x40 0xC0 0xC0 0x87		All	None		

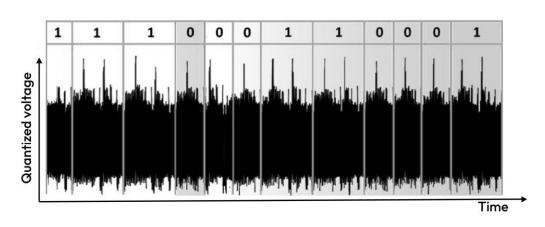


A fault injection attacks, called glitch attacks, can alter the CPU state, causing changes in the software control flow to bypass critical security code sections.

E.g bypassing the **boot authentication checks**, enabling an attacker to execute non-genuine software on the ECU source.

Electromagnetic fault injection (EMFI)

Setup where DUT is subjected to **electromagnetic** wave pulses through a glitch controller



ARAI Preparation : Side channel attacks setup

To exfiltrate sensitive data through covert channels, also known as **side channels**.

- Timing
- Temperature
- Power consumption
- Shared cache memory.

To discover the contents of cryptographic keys inside an ECU or a smart sensor by observing variations in the side channel.

Simple power analysis (SPA)

Figure shows trace of the power variations of an ECU while a key is in use with the **RSA algorithm**.

for taking care of

33

